From 09e16e3b3411a2fe715fe23a18c808e430d4bb5d Mon Sep 17 00:00:00 2001 From: akwizgran <akwizgran@users.sourceforge.net> Date: Sun, 5 Jan 2014 21:45:01 +0000 Subject: [PATCH] Public key validation: check that (x, y) is not the point at infinity. --- .../src/net/sf/briar/crypto/Sec1KeyParser.java | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/briar-core/src/net/sf/briar/crypto/Sec1KeyParser.java b/briar-core/src/net/sf/briar/crypto/Sec1KeyParser.java index 729e109154..4ac67760bc 100644 --- a/briar-core/src/net/sf/briar/crypto/Sec1KeyParser.java +++ b/briar-core/src/net/sf/briar/crypto/Sec1KeyParser.java @@ -35,17 +35,18 @@ class Sec1KeyParser implements KeyParser { public PublicKey parsePublicKey(byte[] encodedKey) throws GeneralSecurityException { - // Note: SEC 1 parameter names are used below, not RFC 5639 names + // The validation procedure comes from SEC 1, section 3.2.2.1. Note + // that SEC 1 parameter names are used below, not RFC 5639 names if(encodedKey.length != publicKeyBytes) throw new GeneralSecurityException(); // The first byte must be 0x04 if(encodedKey[0] != 4) throw new GeneralSecurityException(); - // The x co-ordinate must be >= 0 and < q + // The x co-ordinate must be >= 0 and < p byte[] xBytes = new byte[bytesPerInt]; System.arraycopy(encodedKey, 1, xBytes, 0, bytesPerInt); BigInteger x = new BigInteger(1, xBytes); // Positive signum if(x.compareTo(modulus) >= 0) throw new GeneralSecurityException(); - // The y co-ordinate must be >= 0 and < q + // The y co-ordinate must be >= 0 and < p byte[] yBytes = new byte[bytesPerInt]; System.arraycopy(encodedKey, 1 + bytesPerInt, yBytes, 0, bytesPerInt); BigInteger y = new BigInteger(1, yBytes); // Positive signum @@ -56,10 +57,13 @@ class Sec1KeyParser implements KeyParser { BigInteger lhs = y.multiply(y).mod(modulus); BigInteger rhs = x.multiply(x).add(a).multiply(x).add(b).mod(modulus); if(!lhs.equals(rhs)) throw new GeneralSecurityException(); - // Verify that the point (x, y) times n = the point at infinity + // We know the point (x, y) is on the curve, so we can create the point ECFieldElement elementX = new ECFieldElement.Fp(modulus, x); ECFieldElement elementY = new ECFieldElement.Fp(modulus, y); ECPoint pub = new ECPoint.Fp(params.getCurve(), elementX, elementY); + // Verify that the point (x, y) is not the point at infinity + if(pub.isInfinity()) throw new GeneralSecurityException(); + // Verify that the point (x, y) times n is the point at infinity if(!pub.multiply(params.getN()).isInfinity()) throw new GeneralSecurityException(); // Construct a public key from the point (x, y) and the params -- GitLab